NOTATION

T, temperature; A, affinity for conversion; &, internal variable; u, specific internal
energy; s, specific entropy; p, density; Jg» entropy flux; ¥, local scattering potential; c,
specific heat; X, thermal conductivity.
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STRONG TEMPERATURE-FIELD DISCONTINUITIES IN A NONLINEAR MEDIUM

0. N. Shablovskii UDC 536.2.01

The conditions for the appearance of temperature discontinuities in a nonlinear
medium with finite relaxation times of the heat flux are analyzed.

General laws of the appearance and propagation of simple and shock waves in heat-trans-
fer theory were discussed in [1, 2]; the good prospects for using gasdynamic methods in model-
ing high-intensity thermal processes was noted.

Below, gasdynamic methods are used to investigate the wave equation of heat transfer
and construct its solution behind the front of a strong temperature discontinuity.

1. Simple Heat Waves and the Appearance of a Strong Heat-Field Discontinuity

The generalized heat-transfer equations of [2, 3] form the starting point
Ty 6T = T )
q::-——KTx——vqr (2)
1f high~intensity nonsteady heat transfer occurs [1], or the thermophysical properties of
the medium are such that the influence of the thermal-relaxation parameter y is significant

[4], then the quantity cTt in Eq. (1) may be neglected. Adopting this assumption and set-
ting A = A(T), ¢, v = const, it is found that

73e::(7%:'Tx) : (3)

X

Obviously, Eq. (3) is equivalent to a system of quasilinear equations

dL(T)
dT

A (4)

T,=Ry Riy=1L,, L=L{T) ‘="£(T):—C;->O.
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The relation between the auxiliary function R = R(x, t) and the heat flux is found by
integrating Eq. (2):

05 =B 0() PR +0 [ BRatl, B =exp (=) . )

The system in Eq. (4) coincides in form with the equations of plane one-dimensional nonsteady
isoentropic gas flow in Lagrangian coordinates [5]:

U=y, Up==—py, p=p(0). (6)

Hence, the Cartesian coordinate x, temperature T, and the functions R(x, t), —L(t) are anal-
ogous, respectively, to the mass Lagrangian coordinate y, the specific volume v, velocity u,
and pressure p(v) in a flux with constant entropy.

Writing the Riemann invariant

T 1 T i
5 (i

r=R+ W dT, s=R— } L
o o

daTr

a simple heat wave for which one of the invariants is constant — e.g., r = ry = const — is
considered. Then the s characteristics are straight lines in the plane x, t [5], such that
the constants s, T, R, and L satisfy the relations

d: —x E(r—s L
AL X (s, TS B p)>o. )
dt t—1t, d(r—s) 4L

The influence of the thermodynamic properties of the medium on the behavior of the
characteristics in a simple heat wave is now analyzed.

(I) L = A/cy<0. The thermal conductivity of the medium is a monotonically decreas-
ing function of the temperature. This case corresponds to the equation of state of a gas p =
p(v) such that py < 0, pyy > O.

(a) According to Eq. (7), when sy > 0, Ty > 0, a diverging bundle of characteristics
is obtained — a heating wave, the analog of a rarefaction wave in a gas.

(b) when sx < 0, Tt < 0, a converging bundle of characteristics is obtained — a cooling
wave, the analog of a compression wave in a gas.

(I1) L= i/cy > 0. The thermal conductivity of the medium is a monotonically increas-
ing function of the temperature. This case corresponds to the equation of a state of a thermo-
dynamically anomalous gas p = p(v) such that Py < 0, pyy < 0 [6].

(a) When sx > 0, T¢ > 0, a converging bundle of characteristics is obtained — a heating
wave, the analog of a rarefaction wave in an anomalous gas, propagating in the form of a nar-
row region of sharp variation in the flow parameters.

(b) when sx < 0, Ty < 0, a diverging bundle of characteristics is obtained — a cooling
wave, the analog of a rarefaction wave in a thermodynamically anomalous gas.

(I1ID) L= 0, A = const; the s characteristics are parallel.

Thus, for variants (Ia) and (IIb), the modulus of the temperature gradient of the med-
ium decreases with increase in t. On the other hand, for variants (Ib) and (IIa), when the
characteristic bundle diverges, the modulus of the temperature gradient increases with in-
crease in t, and after a finite time interval [0, t;;,] the characteristics intersect, and
the temperature gradient becomes infinite: a gradient catastrophe sets in [5]. When (>
tmin>0 , the solution of Eq. (3) becomes discontinuous. Calculation by means of Eq. (7)
gives

=1 _xaw.ﬁi] To==T{x, 0), s =5(x, 0), r =r, = const.
tmm = n(lf)x [—}\"(—7,“07—— dx ’ 0 ( ) (] ) 0 >

If {nin<<0, the temperature field remains continuous when t > 0.

Note [4, 7] that for liquid helium, in the temperature range 1.2-2.0°K, the heat
transfer is determined by an equation of the form in Eq. (3), and for the thermal conduc-
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tivity there is both a region of monotonic increase A(7;>0, T¢(T', T%), and a region of
monotonic decrease A(T)<<0, T €(T% T"), T"<<T”, i(T*)=0. The values of T', T*, T" and also
a table of values of the thermal conductivity and graphs of A(T) obtained on the basis of
[8, 9] are given in [4].

It is also known that for the given temperature range in liquid helium, it is possi~
ble for a strong discontinuity to appear in the parameters describing the thermal process
in the secondary sound wave. Physical analysis of this phenomenon and a detailed bibliog-
raphy may be found in [7, 10], for example.

If in the range (T', T*) the thermal process (simple-wave conditions) occurs with 7€
[0, 1), ti>#min, continuous transition from temperature region (T', T#*) to (T*, T") is impossi-
ble: consideration of variants (I) and (II) shows that, under thege conditions in liquid
helium, a strong discontinuity in the temperature field appears: a secondary sonic shock
wave. The same conclusion holds on passing from interval (T*, T") to lower temperatures
Te(T, T*).

2. Condition at a Strong Heat-Field Discontinuity

For a one-dimensional thermal process with plane symmetry, the integral energy-conser-
vation law is written in the form

Xz fy
| loelf) dx+ | (g dt =0, de=c,ar. ®
X1 ;

Taking a closed piecewise~smooth contour C in the plane x, t, the positive direction of
travel around the contour is chosen so that the region bounded by the contour is to the left
of the observer. Then, with bouned and piecewise-smooth functions pe(x, t), q(x, t) Eq. (8)
is written in the form

$ loedx — gdt] = 0,
p

9

which is expedient for derivation of the conditions at the line x = xg(t) of strong heat-field
discontinuity. Following the algorithm of [5, 11] for constructing the conditions of dynamic
matching at the strong discontinuity, Eq. (9) yields

xy {pe} = (g}, (10)

where the curly brackets denote the difference in the values of the enclosed quantity on
the two sides of the discontinuity line, for example {q} = qz — q1.

If p, c, are constant and {pcy} = 0, Eq. (10) simplifies:
cxi{T} ={g}, ¢=pc, (11)

Hence, in particular, it follows that, when {T}s40 , a zero discontinuity of the heat flux
{q} = 0 is only possible for a steady discontinuity line, =x§y = const.

The condition in Eq. (10) or (11) is a consequence of the integral energy-conservation
law and replaces the heat-transfer equation along the line of strong discontinuity of the
thermal field.

3. Examples of Fields Including Strong Discontinuities

In a number of cases it is difficult to use well-known gasdynamic solution considered
as formal mathematical solutions of Eq. (4) in thermal problems. Thus, an important class
of analytical solutions obtained by hodographic transformation is formed by parametric de-
pendences of the form, for example: x = x(T, R), t = t(T, R). It is clear that this form
of solution does not permit the effective use of Eq. (5), determining the heat flux. There-
fore, if the results of mathematical investigations of Eq. (6) available in the literature
are to be used, it is necessary, first, to isolate the solutions suitable for the descrip-
tion of thermal processes on the basis of the model in Egs. (4) and (5) and second to give
these solutions a new, thermophysical interpretatiom.

Let L(T) = —ST™*, 1w, S—const,

(12)
MT)y =T, 1= cyxS == const;
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then two examples of the solution of Eqs. (4) and (5) will be given.
Example 1. Taking the solution of [5] (p. 319) as the basis, it is found that

T=n [(1——0&) (myt - ) ]“
! o (mx + 1)

o= -—2—--1- y M2 (n—1) =2m =0, w2=Al,

g = (mx + ng)'~ Q (), 2uSn!~% =m(x— 1), p = exp (-i—-) , (13)
BQ = k -+ mey (1 — o)*! o™ 5 (st - }no)—““ Bdt, k= const.

There are no other comstraints on the choice of the constants %, S, m, k, mo, and no other
than those already enumerated. So as to be specific, it is assumed that m; >0, n; >0, i=0, 1.

Suppose that a strong discontinuity x = x.(t) propagates against a "cold" background
T1 = 0, q1 = 0, and the temperature and heat flux behind the front of the discontinuity is
determined from Eq. (13). Then, integrating Eq. (11), it is found that
!
nyXy -+ Ny = nyexp [nlnz‘ f QBdt] ,

0

[/
mnge(l—a)* =1, B(t)= [——Z2—| , n,==—const.
1 .2 ( o) () ( i+ my ) 3 (14)
Initially (¢t — 0), the discontinuity
Ty g, | Tl =) ] — e
0 ”‘[ | = (15)

is at the point x£(0) = 0 (no = n3). At t > 0, the position of the discontinuity front is
determined by Eq. (14), and the thermal process develops in the region x€[xy(f), x;(f)], where

xp(t) is an arbitrary function. At the boundaries of this region, T, q are calculated from
Eq. (13). :

If mo = no = 0 in Eq. (13), then the discontinuity in Eq. (15) is zero at t = 0; if the
temperature is to be finite at x€[x, x4, >0, it is necessary totake— l<<u<<1, %+ 1> 2y,
and the function xp(t) must satisfy the condition x,/{**—1 as t -+ 0.

Example 2. The first equation in Eq. (4) allows the new variable z = z(x, t) to be

introduced such that

dz = Tdx + Rdt.

After passing to the plane 2z, t, Eq. (4) takes a form coinciding with the equations of iso-
entropic gas flow in Euler variables

8,4+ RO, - BR,—0, R,+ RR,—0L, =0, L=L(T), To=1, (16)

(49 (R 4
T(0, 2) T
For the case in Eq. (12), Eq. (16) has the simple solution

T=a(—iz——)6, R=a-2, a:(lm—a)ﬁ, §— —2 , (17

®S
L

ot z 1« 2
=2Q(f), x= — (——) , A== , wEzE],
q 1) . ; T

Al ’

j B df, B =exp (—;—) , ,Zb =z, (t),

: (1 — )2
ﬁQ:QCU @f o

®—1

z; = htCexp [—O%j th} » hEO 1 =x(z, 1), ;= x(2 1)

The thermal process is considered in the region X€[xy x/], £2>0. If the temperature is to be
finite, it is necessary totake— | < x<I; the function zp(t) should satisfy the condition
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2,/t*—h, t->0, but is otherwise arbitrary. The law of motion of the left-hand boundary xp,(t)
and the temperature Ty(t)at the boundary are interrelated and depend on the choice of zp(t).
When t = 0

£7(0) = x, (0) = -‘1399— W%, (T} =0, (g} =0;

when t > 0, the discontinuity line x = x¢(t) propagates against a "cold" background Ty = 0,
q1 = 0, and the thermal conditions behind the discontinuity front are characterized by the
relations {T} =T(z, 1), {g} =¢q(z, t) , in accordance with Eq. (17).

NOTATION

T, temperature; x, Cartesian coordinate; t, time; ¢ys specific heat at constant volume;
p, density; v, relaxation time of heat flux; A, thermal conductivity; e, specific internal
energy; q, heat flux; L(T), auxiliary function; y, mass Lagrangian coordinate; u, gas veloc~
ity; v, specific volume of gas; p, pressure; x = xf£(t), line of strong discontinuity; x =
xp(t), boundary of one-dimensional region. Indices: an independent variable as a subscript
denotes partial differentiation; a dot over a function denotes differentiation of a function
of a single argument.
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