
NOTATION 

T, temperature; A, affinity for conversion; ~, internal variable; u, specific internal 
energy; s, specific entropy; p, density; Js' entropy flux; ~, local scattering potential; c, 
specific heat; l, thermal conductivity. 
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STRONG TEMPERATURE-FIELD DISCONTINUITIES IN A NONLINEAR MEDIUM 

O. N. Shablovskii UDC 536.2.01 

The conditions for the appearance of temperature discontinuities in a nonlinear 
medium with finite relaxation times of the heat flux are analyzed. 

General laws of the appearance and propagation of simple and shock waves in heat-trans- 
fer theory were discussed in [i, 2]; the good prospects for using gasdynamic methods in model- 
ing high-intensity thermal processes was noted. 

Below, gasdynamic methods are used to investigate the wave equation of heat transfer 
and construct its solution behind the front of a strong temperature discontinuity. 

I. Simple Heat Waves and the Appearance of a Strong Heat-Field Discontinuity 

The generalized heat~transfer equations of [2, 3] form the starting point 

cY~ ~ ~yTtt  = (~.T~).~, (1)  

q = - -  ~T= - -  Yqt. (2)  

If high-intensity nonsteady heat transfer occurs [I], or the thermophysical properties of 
the medium are such that the influence of the thermal-relaxation parameter y is significant 
[4], then the quantity cT t in Eq. (i) may be neglected. Adopting this assumption and set- 
ring % = %(T), c, y = const, it is found that 

Obviously, Eq. 

(7 x 
(3) is equivalent to a system of quasilinear equations 

(3) 

T, --- R~, Rt = L=, L = L (T); d L ( T )  - -~ /~(T)= ~.. > 0 .  (4)  
d T  cy  
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The relation between the auxiliary function R = R(x, t) and the heat flux is found by 
integrating Eq, (2) : 

q(x't)=~-~[qo(x)--~?cR+c] ~Rdt]' 13 (t) = exp ( % ' - )  �9 (5) 

The system in Eq. (4) coincides in form with the equations o f  plane one-dimenslonal nonsteady 

isoentropic gas flow in Lagrangian coordinates [5]: 

%=u., .~=:--p, ,  p = p ( v )  (6) 

Hence,  t h e  C a r t e s i a n  c o o r d i n a t e  x ,  t e m p e r a t u r e  T, and t h e  f u n c t i o n s  R ( x ,  t ) ,  - -L ( t )  a r e  a n a l -  
o g o u s ,  r e s p e c t i v e l y ,  t o  t h e  mass  L a g r a n g i a n  c o o r d i n a t e  r  t h e  s p e c i f i c  volume v ,  v e l o c i t y  u,  
and p r e s s u r e  p ( v )  in  a f l u x  w i t h  c o n s t a n t  e n t r o p y ,  

Writing the Riemann invariant 

T 1 T i 

7"o TO 

a simple heat wave for which one of the invariants is constant -- e.g., r = r0 = const -- is 
considered. Then the s characteristics are straight lines in the plane x, t [5], such that 
the constants s, T, R, and L satisfy the relations 

d x  _ ~ - -  xo - -  [ (ro ~ s),  a [  (r  - -  s) L L (T) > O. 
dt -- t--t----7': .... e l ( r - - s )  = - -  4L - - = '  (7) 

The i n f l u e n c e  o f  t h e  the rmodynamic  p r o p e r t i e s  o f  t h e  medium o n  t h e  b e h a v i o r  o f  t h e  
c h a r a c t e r i s t i c s  i n  a s i m p l e  h e a t  wave i s  now a n a l y z e d .  

( I )  L = X/cy < O. The t h e r m a l  c o n d u c t i v i t y  o f  t h e  medium i s  a m o n o t o n i c a l l y  d e c r e a s -  
i ng  function of the temperature. This case corresponds to the equation of state of a gas p = 
p(v) such that Pv < 0, Pvv > 0. 

(a) According to Eq. (7), when s x > 0, T t > 0, a diverging bundle of characteristics 
is obtained- a heating wave, the analog of a rarefaction wave in a gas. 

(b) when s x < O, T t < O, a converging bundle of characteristics is obtained- a cooling 
wave, the analog of a compression wave in a gas. 

(II) L = i/cy > 0. The thermal conductivity of the medium is a monotonically increas- 
ing function of the temperature. This case corresponds to the equation of a state of a thermo- 
dynamically anomalous gas p = p(v) such that Pv < O, Pvv < 0 [6]. 

(a) When s x > 0, T t > O, a converging bundle of characteristics is obtained -- a heating 
wave, the analog of a rarefaction wave in an anomalous gas, propagating in the form of a nar- 
row region of sharp variation in the flow parameters. 

(b) when s x < 0, T t < O, a diverging bundle of characteristics is obtained -- a cooling 
wave, the analog of a rarefaction wave in a thermodynamically anomalous gas. 

(III) L = 0, % - const; the s characteristics are parallel. 

Thus, for variants (la) and (lib), the modulus of the temperature gradient of the med- 
ium decreases with increase in t. On the other hand, for variants (Ib) and (lla), when the 
characteristic bundle diverges, the modulus of the temperature gradient increases with in- 
crease in t, and after a finite time interval [0, tmin] the characteristics intersect, and 
the temperature gradient becomes infinite: a gradient catastrophe sets in [5]. When t~ 
tmln>0 , the solution of Eq. (3) becomes discontinuous. Calculation by means of Eq. (7) 
gives 

t_, [ - -X(To)  also] To T(x, 0), So sfx, 0), r = r o = c o n s t  
n l t n  ~ - ~  max , == = 

(.~ [ ~-i (~Y-o) dx ] 

If tmln~0, the temperature field remains continuous when t > O. 

Note [4, 7] that for liquid helium, in the temperature range 1.2-2.0~ the heat 
transfer is determined by an equation of the form in Eq. (3), and for the thermal conduc- 
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~ivity there is both a region of monotonic increase i(TT>O, TE(T', T*), and a region of 
monotonic decrease ~(T)<CO, T C(T*, T"), T ' < T " ,  ~(T*) ~ O. The values of T', T*, T" and also 
a table of values of the thermal conductivity and graphs of %(T) obtained on the basis of 
[8, 9] are given in [4]. 

It is also known that for the given temperature range in liquid helium, it is possi- 
ble for a strong discontinuity to appear in the parameters describing the thermal process 
in the secondary sound wave. Physical analysis of this phenomenon and a detailed bibliog- 
raphy may he found in [7, I0], for example. 

If in the range (T', T*) the thermal process (simple-wave conditions) occurs with t~ 
[0, tl),ll>tmm, continuous transition from temperature region (T', T*) to (T*, T") is impossi- 
ble: consideration of variants (I) and (II) shows that, under these conditions in liquid 
helium, a strong discontinuity in the temperature field appears: a secondary sonic shock 
wave. The same conclusion holds on passing from interval (T*, T") to lower temperatures 
T6 (T~ T*). 

2. Condition at a Strong Heat-Field Discontinuity 

For a one-dimensional thermal process with plane symmetry, the integral energy-conser- 
vation law is written in the form 

X2 /~ 

(p~]~:) dx + j'" (qlx:) dt --=- O, de = cvdT. (8 )  
Xl I, 

Taking a closed piecewise-smooth contour C in the plane x, t ,  the positive direction of 
travel around the contour is chosen so that the region bounded by the contour is to the le f t  
of the observer. Then, with bouned and piecewise-smooth functions pc(x, t ) ,  q(x, t) Eq. (8) 
is written in the form 

~i ;p~dx- qdtI = O, 
d (9) 

which is expedient for derivation of the conditions at the line x = xf(t)of strong heat-field 
discontinuity. Following the algorithm of [5, Ii] for constructing the conditions of dynamic 
matching at the strong discontinuity, Eq. (9) yields 

i-j {p~} = {q}, ( m )  

where the curly brackets denote the difference in the values of the enclosed quantity on 
the two sides of the discontinuity line, for example {q} = q2 -- ql. 

If p, Cv are constant and {pc v} = 0, Eq. (i0) simplifies: 

c2rj {T }  == {q}, c = pc~. (11) 

Hence, in particular, it follows that, when [T}~0 , a zero discontinuity of the heat flux 
{q} = 0 is only possible for a steady discontinuity line, xf = const. 

The condition in Eq. (i0) or (ii) is a consequence of the integral energy-conservation 
law and replaces the heat-transfer equation along the line of strong discontinuity of the 
thermal field. 

3. Examples of Fields Including Strong Discontinuities 

In a number of cases it is difficult to use well-known gasdynamic solution considered 
as formal mathematical solutions of Eq. (4) in. thermal problems. Thus, an important class 
of analytical solutions obtained by hodographic transformation is formed by parametric de- 
pendences of the form, for example: x = x(T, R), t = t(T, R), It is clear that this form 
of solution does not permit the effective use of Eq. (5), determining the heat flux. There- 
fore, if the results of mathematical investigations of Eq. (6) available in the literature 
are to be used, it is necessary, first, to isolate the solutions suitable for the descrip- 
tion of thermal processes on the basis of the model in Eqs. (4) and (5) and second to give 
these solutions a new, thermophysical interpretation. 

L e t  L ( T ) : = - - S T  -• • S - - c o n s t ,  
(12) 

;L(T) = IT -:r I = c ~ x S ~ - c o n s t ;  
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then two examples of the solution of 

Example !" Taking the solution 

T=nl [ ( 1 - - a ) ( m l t +  
L (n~x + no) 

Eqs. (4) and (5) will be given. 

of [5] (p. 319) as the basis, it is found that 

q =(n lx - t -  no)l-~ Q(t), 2 x S n l - " =  m ( •  l), ~ = e x p  ( @ )  , 

~Q = k + racy (1 - -  ~)~'- 1 a~z j, (mit + too) -~" ~dt, k ~- const. 

(13) 

There are no other constraints on the choice of the constants ~, S, m, k, mo, andno other 
than those already enumerated. So as to be specific, it is assumed that mi>0, hi>0, i= 0, I. 

Suppose that a strong discontinuity x = xf(t) propagates against a "cold" background 
TI -- 0, ql = O, and the temperature and heat flux behind the front of the discontinuity is 
determined from Eq. (13). Then, integrating Eq. (ii), it is found that 

I 

nix]-~ no----thexp [nln, ,[ OBdt], 
0 

, , n ~  ~ c o n s t ,  nln~c(1--cz)~= 1, B(t)---- m l t ~ _ m  ~ (14) 

Initially (t- 0 ) ,  the discontinuity 

{T} = n~ [ m~176  ] ~, {q} = ktz~-a 
noa ( 15 ) 

is at the point xf(0) = 0 (no = n3). At t > 0, the position of the discontinuity front is 
determined by Eq. (14), and the thermal process develops in the region x6 [xb(0, xl(t)], where 
xb(t) is an arbitrary function. At the boundaries of this region, T, q are calculated from 
Eq. (13). 

I f  mo= no = 0 in Eq. (13), then the d iscont inu i ty  in Eq. (15) i s  zero at t = 0; i f  the 
temperature is to be finite at X6[Xb, xl], t~--~O, it is necessary to take-I<~< 1, x - ~ - 1 > 2 7 ,  
and the function xb(t ) must satisfy the condition xb/t~v-+ I as t § O. 

Example 2. The first equation in Eq. (4) allows the new variable z = z(x, t) to be 
introduced such that 

After passing to the plane z, t, Eq. 
entropic gas flow in Euler variables 

For the c a s e  i n  Eq. 

dz = Tdx+Rdt. 

(4) takes a form coinciding with the equations of iso- 

Ot+ROz+OR,=O, Rt+RRz--O -IL,=O, L=L(T), TO= I, 

x = T(O, z) --T- 

( 1 2 ) ,  Eq. (16) h a s  t h e  s i m p l e  s o l u t i o n  

(16) 

T = a  , R = o c  , a--= , 6 =  , 
l \ x S  ] l - - x  

1 

q = zQ (t), x =  , o~ = , x 2 ~ 1 ,  
�9 a 1- t -x  " 

~ Q =  2 C •  l (1 ~)z t -~" f ~ t~" dt, 

z, = ht-~ exp [--~c S QdtJ , h :/= O, x,~ = x(zb, t), :9 = x(zi ,  O. 

(17) 

The thermal process is considered in the region xE[xb, xd, l~0 If the temperature is to be 
finite, it is necessary to take--l <• I; the function Zb(t) should satisfy the condition 
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zb/('--+h , t-+O, but is otherwise arbitrary. The law of motion of the left-hand boundary xb(t ) 
and the temperature Tb(t)at the boundary are interrelated and depend on the choice of Zb(t). 
When t = 0 

l 

xy(O)=xb(O )= (l--a) hZ_a, {T}=O, {q}=O; 

when t > 0, the discontinuity line x = xf(t) propagates against a "cold" background T1 = O, 
ql = 0, and the thermal conditions behind the discontinuity front are characterized by the 
relations {T}= T(zl, t), {q}-----q(zl, t) , in accordance with Eq. (17). 

NOTATION 

T, temperature; x, Cartesian coordinate; t, time; c v, specific heat at constant volume; 
p, density; y, relaxation time of heat flux; ~, thermal conductivity; ~, specific internal 
energy; q, heat flux; L(T), auxiliary function; ~, mass Lagrangian coordinate; u, gas veloc- 
ity; v, specific volume of gas; p, pressure; x = xf(t), llne of strong discontinuity; x = 
Xb(t), boundary of one-dimensional region. Indices: an independent variable asa subscript 
denotes partial differentiation; a dot over a function denotes differentiation of a function 
of a single argument. 
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